
Chapter 6

T. H. Pulliam

NASA Ames

1

TIME-MARCHING METHODS FOR ODE’S

• Discretization of spatial derivatives in the governing PDE’s

(e.g., the Navier-Stokes equations)

– Leads to coupled system of nonlinear ODE’s in the form

d~u

dt
= ~F (~u, t) (1)

– Can be integrated in time using a time-marching method to

obtain a time-accurate solution to an unsteady flow problem.

– For a steady flow problem, spatial discretization leads to a

coupled system of nonlinear algebraic equations in the form

~F (~u) = 0 (2)

• Nonlinearity leads to iterative methods to obtain solutions.

2

• Linearization will produce coupled systems of linear algebraic

equations which must be solved at each iteration.

• These can be solved iteratively using relaxation methods

• Alternatively, a time-dependent path to the steady state

• Time-marching method to integrate the unsteady equations

– To accurately resolve on unsteady solution in time.

– Until the solution is sufficiently close to the steady solution.

• When using a time-marching method to compute steady flows

– The goal is simply to remove the transient portion of the

solution as quickly as possible

– Time-accuracy is not required.

– This motivates the study of stability and stiffness.

3

Notation

• Using the semi-discrete approach

• Reduce PDE to a set of coupled ODE’s

• Consider the scalar case

du

dt
= u′ = F (u, t) (3)

• Subscript n, h = ∆t, gives

u′n = Fn = F (un, tn) , tn = nh

• Intermediate time steps involving temporary calculations ũ, ū,

etc.

ũ′n+α = F̃n+α = F (ũn+α, tn + αh)

4

Converting Time-Marching Methods to O∆E ’s

Three representative examples of O∆E ’s

un+1 = un + hu′n Euler Explicit (4)

un+1 = un + hu′n+1 Euler Implicit (5)

Predictor-Corrector

ũn+1 = un + hu′n Predictor

un+1 =
1

2
[un + ũn+1 + hũ′n+1] Corrector (6)

5

Converting Time-Marching Methods to O∆E ’s

• Representative ODE:

du

dt
= u′ = λu+ aeµt (7)

• Replacing u′ in Eq.’ 4 un+1 = un + hu′n

un+1 = un + h(λun + aeµhn) or

un+1 − (1 + λh)un = haeµhn (8)

• Implicit Euler method, Eq. 5, un+1 = un + hu′n+1

un+1 = un + h
(
λun+1 + aeµh(n+1)

)
or

(1− λh)un+1 − un = heµh · aeµhn (9)

6

• The predictor-corrector sequence, Eq. 6, gives

ũn+1 − (1 + λh)un = aheµhn

−1

2
(1 + λh)ũn+1 + un+1 −

1

2
un =

1

2
aheµh(n+1) (10)

• Coupled set of linear O∆E’s with constant coefficients.

• First line of Eq. 10 Predictor step: explicit Euler method.

• The second line Corrector step: note that

ũ′n+1 = F (ũn+1, tn + h)

= λũn+1 + aeµh(n+1)

7

Euler Explicit: Recursive Solution

• Using Eq.8 with a = 0 (simplifies analysis)

un+1 = (1 + λh)un

• Let u0, time t = 0, n = 0 be initial condition (IC)

• Then

u1 = (1 + λh)u0

u2 = (1 + λh)u1 = (1 + λh)
2
u0

u3 = (1 + λh)u2 = (1 + λh)
3
u0

...

un = (1 + λh)
n
u0 (11)

8

Euler Implicit: Recursive Solution

• Using Eq.9 with a = 0 (simplifies analysis)

un+1 =

(
1

1− λh

)
un

• Then

u1 =

(
1

1− λh

)
u0

u2 =

(
1

1− λh

)
u1 =

(
1

1− λh

)2

u0

...

un =

(
1

1− λh

)n
u0 (12)

9

Predictor- Corrector: Recursive Solution

• Using Eq.10 with a = 0

ũn+1 = (1 + λh)un : Predictor Step (13)

un+1 =
1

2
(un + ũn+1 + λhũn+1) : Corrector Step (14)

• Substituting Eq.13 into Eq.14

un+1 =

(
1 + λh+

1

2
(λh)2

)
un

• By recursion

un+1 =

(
1 + λh+

1

2
(λh)2

)n
u0 (15)

10

Recursive Solution with Forcing Function

• Using Eq.8 with a 6= 0

un+1 = (1 + λh)un + aeµhn

u1 = (1 + λh)u0 + a

u2 = (1 + λh)u1 + aeµh =

(1 + λh) ((1 + λh)u0 + a) + aeµh =

(1 + λh)2u0 + (1 + λh)a
(
1 + eµh

)
...

un = (1 + λh)
n
u0 +

n∑
l=1

(1 + λh)l−1ae(l−1)µh (16)

11

Generalize Solutions, O∆E

• Recursive solutions in general are difficult and complicated

• There is a generalize procedure for O∆E ’s

• Note the general form of the solutions, Eq.11,12, and 15

un = σnu0

with

σee = (1 + λh)

σei =

(
1

1− λh

)
σpc =

(
1 + λh+

1

2
(λh)2

)

12

Notation and Displacement Operator

• O∆E difference displacement operator, E

un+1 = Eun , un+k = Ekun

• The displacement operator also applies to exponents, thus

bα · bn = bn+α = Eα · bn

where α can be any fraction or irrational number.

• For example:

un+2 = E2un, un+ 1
5

= E
1
5un

eµh(n+3) = E3eµh(n) eµh(n− 2
3) = E−

2
3 eµh(n)

13

Solution to Representative O∆E

• The time-marching methods, given by Eqs. 8 to 10, rewritten

[E − (1 + λh)]un = haeµhn (17)

[(1− λh)E − 1]un = h · Eaeµhn (18)

 E −(1 + λh)

− 1
2 (1 + λh)E E − 1

2

 ũ

u


n

= h

 1

1
2E

 aeµhn (19)

• Subsets of the operational form of the representative O∆E

P (E)un = Q(E) · aeµhn (20)

14

Predictor-Corrector:Matrix Form O∆E

• Starting with Eq.10 and using E

Eũn − (1 + λh)un = aheµhn

−1

2
(1 + λh)Eũn + Eun −

1

2
un =

1

2
Eaheµh(n)

 E −(1 + λh)

− 1
2 (1 + λh)E E − 1

2

 ũ

u


n

= h

 1

1
2E

 aeµhn

15

General Solution to O∆E

• General solution for P (E)un = Q(E) · aeµhn

un =
K∑
k=1

ck(σk)
n

+ aeµhn · Q(eµh)

P (eµh)
(21)

• P (E): characteristic polynomial, Q(E): particular polynomial

• σk are the K roots of the characteristic polynomial, P (σ) = 0.

• Coupled O∆E ’s such as the Predictor-Corrector, Eq. 19

– Determinants used to form P (E) and Q(E)

– The ratio Q(E)/P (E) can be found by Cramer’s rule.

16

Examples of Solutions: O∆E

• Euler Explicit: Eq. 17, we have

P (E) = E − 1− λh

Q(E) = h (22)

un = c1(1 + λh)n + aeµhn · h

eµh − 1− λh
• Implicit Euler method, Eq. 18, we have

P (E) = (1− λh)E − 1

Q(E) = hE (23)

un = c1

(
1

1− λh

)n
+ aeµhn · heµh

(1− λh)eµh − 1

17

• Coupled predictor-corrector equations, Eq. 19,

– Solve for the final family un

– Intermediate family ũ, not used in general

• Using Determinants for P (E) and Q(E)

P (E) = det

 E −(1 + λh)

− 1
2 (1 + λh)E E − 1

2


= E

(
E − 1− λh− 1

2
λ2h2

)

Q(E) = det

 E h

− 1
2 (1 + λh)E 1

2hE


=

1

2
hE(E + 1 + λh)

18

• The σ-root is found from

P (σ) = σ

(
σ − 1− λh− 1

2
λ2h2

)
= 0

• One nontrivial root, (σ = 0 is trivial root)

un = c1

(
1 + λh+

1

2
λ2h2

)n
+

aeµhn ·
1
2h
(
eµh + 1 + λh

)
eµh − 1− λh− 1

2λ
2h2

(24)

19

Establishing the σ − λ Relation

• Introduced to two basic kinds of roots

– λ-roots: eigenvalues of the A, defined by space differencing

the original PDE

– σ-roots: roots of the characteristic polynomial in a

representative O∆E

• σ − λ relationship: used to identify many of the essential

properties of a time-march method.

• Solution to the ODE

~u(t) = c1
(
eλ1h

)n ~x1 + · · ·+ cm
(
eλmh

)n ~xm + · · ·

+ cM
(
eλMh

)n ~xM + P.S. (25)

• Explicit Euler λ-root given by σ = 1 + λh.

20

• The solution for O∆E

~un = c1(σ1)
n ~x1 + · · ·+ cm(σm)

n ~xm + · · ·

+ cM (σM)
n ~xM + P.S. (26)

where the cm and the ~xm in the two equations are identical and

σm = (1 + λmh).

• Correspondence between σm and eλmh.

• eλh can be expressed in terms of the series

eλh = 1 + λh +
1

2
λ2h2 +

1

6
λ3h3 + · · ·+ 1

n!
λnhn + · · ·

21

• The truncated expansion σ = 1 + λh approximates eλh

– Define erλ = eλh − σ = O(λ2h2).

– O∆E solution is for un

– Typically define error for a derivative, e.g. ert

– Define Order of accuracy p for O∆E as: O(hp) ≡ erλ
h

– Euler explicit O∆E : erλ = O(h), a first order method.

22

Leapfrog O∆E

• Leapfrog method:

un+1 = un−1 + 2hu′n (27)

• Characteristic polynomial

P (E) = E2 − 2λhE − 1

leads to

σ2
m − 2λmhσm − 1 = 0 (28)

• Each λ produces two σ-roots

σ±m = λmh ±
√

1 + λ2
mh

2

23

• For one of these we find

σ+
m = λmh +

√
1 + λ2

mh
2

= 1 + λmh +
1

2
λ2
mh

2 − 1

8
λ4
mh

4 + · · · (29)

• Approximation to eλmh with an error O(λ3h3).

• Therefore: erλ = O(h2), a second order method.

• The other root, λmh −
√

1 + λ2
mh

2, is a spurious root.

24

Principal and Spurious Roots

• Depending on the σ − λ relation

Application of time-marching method to the equations in a

coupled system of linear ODE’s always produces one σ-root for

every λ-root satisfying

σ = 1 + λh+
1

2
λ2h2 + · · · +

1

k!
λkhk +O

(
hk+1

)
where k is the order of the time-marching method.

– There could be multiple σ roots

– One is always the principal, σ1(h, λ)

– Note: σ1(h = 0, λ) = 1.0, consistent with ehλ = 1, h = 0

– All other roots are spurious, typically inaccurate, and hopefully

stable and small

25

Accuracy Measures of Time-Marching Methods

• Two broad categories of errors used to derive and evaluate

time-marching methods.

– Error made in each time step, This is a local error.

– Such as that found from a Taylor table analysis, used as the

basis for establishing the order of a method.

– Error determined at the end of a given event, global error,

– Covers a specific interval of time composed of many time

steps.

– Useful for comparing methods

26

• Taylor Series analysis is a very limited tool for finding the more

subtle properties of a numerical time-marching method. For

example, it is of no use in:

– finding spurious roots.

– evaluating numerical stability and separating the errors in

phase and amplitude.

– analyzing the particular solution of predictor-corrector

combinations.

– finding the global error.

27

Comparison of Exact ODE and O∆E Error

• Exact solution to the representative ODE:

u(nh) = c
(
eλh
)n

+
a
(
e(µh)

)n
µ− λ

(30)

• Solution to the representative O∆E’s, including only the

contribution from the principal root:

un = c1(σ1)
n

+ aeµhn · Q(eµh)

P (eµh)
(31)

28

Error Measures for O∆E ’s

• Transient error

– All time-marching methods produce a principal σ-root for

every λ-root that exists in a set of linear ODE’s.

– Compare the unsteady part of Eq.30, eλh

– With the unsteady part of Eq.31, σ

– Define, erλ ≡ eλh − σ1

– With the Order of accuracy defined as O(hp) ≡ erλ
h

– Or the term in the expansion of eλh which matches the last

term of erλ .

29

• Amplitude and Phase Error

– Assume λ eigenvalue is pure imaginary.

– Equations governing periodic convection.

– Let λ = iω where ω is real representing a frequency.

– Numerical method produces a principal σ-root: complex

– Expressible in the form

σ1 = σr + iσi ≈ eiωh (32)

– The local error in amplitude: deviation of |σ1| from unity

era = 1− |σ1| = 1−
√

(σ1)2
r + (σ1)2

i

– Local error in phase can be defined as

erω ≡ ωh− tan−1 [(σ1)i/(σ1)r)] (33)

30

– Amplitude and phase errors are important measures of the

suitability of time-marching methods for convection and wave

propagation phenomena.

• Local Accuracy of the Particular Solution (erµ)

– Compare the particular solution of the ODE with that for the

O∆E.

P.S.(ODE) = aeµt · 1

(µ− λ)

and

P.S.(O∆E) = aeµt · Q(eµh)

P (eµh)

– Measure of the local error in the particular solution: introduce

the definition

erµ ≡ h
{
P.S.(O∆E)

P.S.(ODE)
− 1

}
(34)

31

– Multiplication by h converts the error from a global measure

to a local one, so that the order of erλ and erµ are consistent.

– Determine the leading error term, Eq. 34 in terms of the

characteristic and particular polynomials as

erµ =
co

µ− λ
·
{

(µ− λ)Q
(
eµh
)
− P

(
eµh
)}

(35)

– Expanded in a Taylor series, where

co = lim
h→0

h(µ− λ)

P (eµh)

The value of co is a method-dependent constant that is often

equal to one.

– Algebra involved in finding the order of erµ is quite tedious.

– An illustration of this is given in the section on Runge-Kutta

methods.

32

Global Accuracy

• To compute some time-accurate phenomenon over a fixed

interval of time using a constant time step.

• Let T be the fixed time of the event and h be the chosen step size.

• Then the required number of time steps, is N , T = Nh

– Global error in the transient

Erλ ≡ eλT − (σ1(λh))
N

(36)

– Global error in amplitude and phase

Era = 1−
(√

(σ1)2
r + (σ1)2

i

)N
(37)

33

Erω ≡ N

[
ωh− tan−1

(
(σ1)i
(σ1)r

)]
= ωT −N tan−1 [(σ1)i/(σ1)r] (38)

– Global error in the particular solution

Erµ ≡ (µ− λ)
Q
(
eµh
)

P (eµh)
− 1

34

Linear Multistep Methods

The Linear Multistep Methods (LMM’s) are probably the most

natural extension to time marching of the space differencing schemes.

1∑
k=1−K

αkun+k = h
1∑

k=1−K

βku
′
n+k

Applying the representative ODE, u′ = λu+ aeµt, the characteristic

polynominals P (E) and Q(E) are:

35

Linear Multistep Methods

[(
1∑

k=1−K

αkE
k

)
−

(
1∑

k=1−K

βkE
k

)
hλ

]
un = h

(
1∑

k=1−K

βkE
k

)
aeµhn

[P (E)]un = Q(E)aeµhn

Consistency requires that σ → 1 as h→ 0 which is met if∑
k

αk = 0 and
∑
k

βk =
∑
k

(K + k − 1)αk

“Normalization” results in
∑
k βk = 1

36

Families of Linear Multistep Methods

• Adams-Moulton family

α1 = 1, α0 = −1, αk = 0, k = −1,−2, · · ·

• Adams-Bashforth family: same α’s with constraint: β1 = 0.

• Three-step Adams-Moulton method

un+1 = un + h(β1u
′
n+1 + β0u

′
n + β−1u

′
n−1 + β−2u

′
n−2)

Taylor tables can be used to find classes of second, third and

fourth order methods.

37

Examples of Linear Multistep Methods

Explicit Methods

un+1 = un + hu′n Euler

un+1 = un−1 + 2hu′n Leapfrog

un+1 = un + 1
2h
[
3u′n − u′n−1

]
AB2

un+1 = un + h
12

[
23u′n − 16u′n−1 + 5u′n−2

]
AB3

38

Examples of Linear Multistep Methods

Implicit Methods

un+1 = un + hu′n+1 Implicit Euler

un+1 = un + 1
2h
[
u′n + u′n+1

]
Trapezoidal (AM2)

un+1 = 1
3

[
4un − un−1 + 2hu′n+1

]
2nd-order Backward

un+1 = un + h
12

[
5u′n+1 + 8u′n − u′n−1

]
AM3

39

Two-Step Linear Multistep Methods

• Most general scheme (1 + ξ)un+1 =

[(1 + 2ξ)un − ξun−1] + h [θu′n+1 + (1− θ + ϕ)u′n − ϕu′n−1

]
• Examples:

θ ξ ϕ Method Order

0 0 0 Euler 1

1 0 0 Implicit Euler 1

1/2 0 0 Trapezoidal or AM2 2

1 1/2 0 2nd Order Backward 2

3/4 0 −1/4 Adams type 2

1/3 −1/2 −1/3 Lees 2

1/2 −1/2 −1/2 Two–step trapezoidal 2

5/9 −1/6 −2/9 A–contractive 2

0 −1/2 0 Leapfrog 2

0 0 1/2 AB2 2

0 −5/6 −1/3 Most accurate explicit 3

1/3 −1/6 0 Third–order implicit 3

5/12 0 1/12 AM3 3

1/6 −1/2 −1/6 Milne 4

40

• Both erµ and erλ are reduced to 0(h3) if ϕ = ξ − θ + 1
2

• The class of all 3rd-order methods ξ = 2θ − 5
6

• Unique fourth-order method is found by setting

θ = −ϕ = −ξ/3 = 1
6 .

41

Predictor-Corrector Methods

• Predictor-corrector methods are composed of sequences of linear

multistep methods.

• Simple one-predictor, one-corrector scheme

ũn+α = un + αhu′n

un+1 = un + h
[
βũ′n+α + γu′n

]
• α, β and γ are arbitrary parameters.

P (E) = Eα ·
[
E − 1− (γ + β)λh− αβλ2h2

]
Q(E) = Eα · h · [βEα + γ + αβλh]

42

• Second-order accuracy: both erλ and erµ must be O(h3).

• Leads to: γ + β = 1 ; αβ = 1
2

• Second-order accurate predictor-corrector sequence for any α

ũn+α = un + αhu′n

un+1 = un +
1

2
h

[(
1

α

)
ũ′n+α +

(
2α− 1

α

)
u′n

]

43

Predictor-Corrector Methods: Examples

• The Adams-Bashforth-Moulton sequence for k = 3

ũn+1 = un +
1

2
h
[
3u′n − u′n−1

]
un+1 = un +

h

12

[
5ũ′n+1 + 8u′n − u′n−1

]
• The Gazdag method

ũn+1 = un +
1

2
h
[
3ũ′n − ũ′n−1

]
un+1 = un +

1

2
h
[
ũ′n + ũ′n+1

]

44

• The Burstein method α = 1/2 is

ũn+1/2 = un +
1

2
hu′n

un+1 = un + hũ′n+1/2

• MacCormack’s method

ũn+1 = un + hu′n

un+1 =
1

2
[un + ũn+1 + hũ′n+1]

45

Runge-Kutta Methods

• Runge-Kutta method of order k: principal σ-root is given by

σ = 1 + λh +
1

2
λ2h2 + · · ·+ 1

k!
λkhk

• To ensure kth order accuracy: erµ = O(hk+1)

• General RK(N) scheme

ûn+α = un + βhu′n

ũn+α1
= un + β1hu

′
n + γ1hû

′
n+α

un+α2 = un + β2hu
′
n + γ2hû

′
n+α + δ2hũ

′
n+α1

un+1 = un + µ1hu
′
n + µ2hû

′
n+α + µ3hũ

′
n+α1

+µ4hu
′
n+α2

46

Runge-Kutta Methods

• Total of 13 free parameters,where the choices for the time

samplings, α, α1, and α2, are not arbitrary.

α = β

α1 = β1 + γ1

α2 = β2 + γ2 + δ2

• Ten (10) free parameters remain to obtain various levels of

accuracy, erλ, era, erω, erµ

47

Runge-Kutta Methods

• Finding P (E) and Q(E) and then eliminating the β’s results in

the four conditions

µ1 + µ2 + µ3 + µ4 = 1 (1)

µ2α + µ3α1 + µ4α2 = 1/2 (2)

µ3αγ1 + µ4(αγ2 + α1δ2) = 1/6 (3)

µ4αγ1δ2 = 1/24 (4)

• Guarantee that the five terms in σ exactly match the first 5

terms in the expansion of eλh .

48

• To satisfy the condition that erµ = O(h5)

µ2α
2 + µ3α

2
1 + µ4α

2
2 = 1/3 (3)

µ2α
3 + µ3α

3
1 + µ4α

3
2 = 1/4 (4)

µ3α
2γ1 + µ4(α2γ2 + α2

1δ2) = 1/12 (4)

µ3αα1γ1 + µ4α2(αγ2 + α1δ2) = 1/8 (4)

• Gives 8 equations for 10 unknowns.

49

RK4 Method

• Storage requirements and work estimates allow for a variety of

choices for the remaining 2 parameters.

• “Standard” 4th order Runge-Kutta method expressed in

predictor-corrector form

ûn+1/2 = un +
1

2
hu′n

ũn+1/2 = un +
1

2
hû′n+1/2

un+1 = un + hũ′n+1/2

un+1 = un +
1

6
h
[
u′n + 2

(
û′n+1/2 + ũ′n+1/2

)
+ u′n+1

]

50

Implementation of Implicit Methods

• There are various trade-offs which must be considered in

selecting a method for a specific application.

– Representative ODE, u′ = λu+ aeµt

(1− λh)un+1 − un = heµh · aeµhn

– Solving for un+1 gives

un+1 =
1

1− λh
(un + heµh · aeµhn) (39)

– This calculation requires a division.

51

Implicit Euler For Coupled System

• Implicit Euler applied to ~u′ = A~u− ~f(t)

• The equivalent to Eq. 39 is

(I − hA)~un+1 − ~un = −h~f(t+ h) (40)

~un+1 = (I − hA)−1[~un − h~f(t+ h)] (41)

• The inverse is not actually performed, but rather we solve Eq. 40

as a linear system of equations.

52

Example

• The system of equations which must be solved is tridiagonal

(e.g., for biconvection, A = −aBp(−1, 0, 1)/2∆x)

• Its solution is inexpensive in 1D,

• For multidimensions the bandwidth can be very large.

• Various techniques are used to make the solution process more

efficient.

53

Application to Nonlinear Equations

• Consider the general nonlinear scalar ODE given by

du

dt
= F (u, t) (42)

• Implicit Euler method:

un+1 = un + hF (un+1, tn+1) (43)

• Nonlinear difference equation.

• Requires complicated non-linear solution process for un+1

– Example, nonlinear ODE:

du

dt
+

1

2
u2 = 0 (44)

54

– Solved using implicit Euler time marching

un+1 + h
1

2
u2
n+1 = un (45)

– Requires a nontrivial method to solve for un+1.

• Linearization to produce a solvable method

• Think in terms of small perturbations from a reference state

55

Local Linearization for Scalar Equations

• Expanding F (u, t) about some reference point in time.

• Reference value tn, the dependent variable un.

• A Taylor series expansion about these reference quantities

F (u, t) = F (un, tn) +
(
∂F

∂u

)
n
(u− un) +

(
∂F

∂t

)
n
(t− tn)

+
1

2

(
∂2F

∂u2

)
n

(u− un)2 +

(
∂2F

∂u∂t

)
n

(u− un)(t− tn)

+
1

2

(
∂2F

∂t2

)
n

(t− tn)2 + · · · (46)

• Expansion of u(t) in terms of the independent variable t is

u(t) = un + (t− tn)
(
∂u

∂t

)
n

+
1

2
(t− tn)2

(
∂2u

∂t2

)
n

+ · · · (47)

56

• Assuming t is within h of tn, both (t− tn)k and (u− un)k are O(hk),

and Eq. 46 can be written

F (u, t) = Fn +
(
∂F

∂u

)
n
(u− un) +

(
∂F

∂t

)
n
(t− tn) +O(h2) (48)

• This represents a second-order-accurate, locally-linear approximation

to F (u, t) that is valid in the vicinity of the reference station tn

• Locally time-linear representationof du
dt

= F (u, t)

du

dt
=
(
∂F

∂u

)
n
u+

(
Fn −

(
∂F

∂u

)
n
un

)
+
(
∂F

∂t

)
n
(t− tn) +O(h2)

57

Implementation of the Trapezoidal Method

• The trapezoidal method is given by

un+1 = un +
1

2
h[Fn+1 + Fn] + hO(h2) (49)

• Note hO(h2): emphasizes second order accurate of method

• Using Eq. 48 to evaluate Fn+1 = F (un+1, tn+1)

un+1 = un +
1

2
h
[
Fn +

(
∂F

∂u

)
n
(un+1 − un) (50)

+h
(
∂F

∂t

)
n

+O(h2) + Fn

]
+hO(h2) (51)

• Note that the O(h2) term within the brackets (which is due to the

local linearization) is multiplied by h and therefore is the same order

as the hO(h2) error from the trapezoidal method.

58

• The local linearization updated at each time step has not reduced the

order of accuracy of a second-order time-marching process.

• Assuming the F (u) is not an explicit function of time, t

• Reordering of the terms in Eq. 50[
1 − 1

2
h
(
∂F

∂u

)
n

]
∆un = hFn (52)

• The delta form.

59

Implementation of the Implicit Euler Method

• First-order implicit Euler method can be written

un+1 = un + hFn+1 (53)

• Introduce Eq. 49, rearrange terms[
1− h

(
∂F

∂u

)
n

]
∆un = hFn (54)

• The only difference between the implementation of the

trapezoidal method and the implicit Euler method is the factor

of 1
2 in the brackets of the left side of Eqs. 52 and 54.

60

Newton’s Method

• Consider the limit h→∞ of Eq. 54 obtained by dividing both

sides by h and setting 1/h = 0. There results

−
(
∂F

∂u

)
n

∆un = Fn (55)

or

un+1 = un −
[(

∂F

∂u

)
n

]−1

Fn (56)

• Newton method for finding the roots of the nonlinear F (u) = 0.

• Implicit Euler is just under-relaxed Newton’s Method

61

